
Migrating GitHub's 
Global IDs

@andrewhoglund

Andrew Hoglund
GitHub



Brief Overview



Introduced in 2016
Shortly after Facebook’s public release of GraphQL.

Originally intended as v4.

Now considered another API, alongside REST.



300,000,000+
Request Per Day



36K
Request Per Second

350
Mutations

400
Objects



Today’s Talk
Current ID Format

Motivation for Change

Rollout Strategy

Pitfalls/Challenges



Current ID Format



https://graphql.org/learn/global-obje
ct-identification/

- Base64 Encoded

- Contains Object Type and Object Id

- Intended to be Opaque

Current Format



https://graphql.org/learn/global-obje
ct-identification/

Current Format - Example



https://graphql.org/learn/global-obje
ct-identification/

Current Format - Example

$ echo MDEwOlJlcG9zaXRvcnkxODY4OTAzOTU= | base64 -d

010:Repository186890395

Object Type Database IDChecksum



https://graphql.org/learn/global-obje
ct-identification/

- Simple loading logic.

- Works well with single database.

Current Format



Why Change?

Speaker Name



https://graphql.org/learn/global-obje
ct-identification/

- Performant queries to sharded data.

- Flexibility for future architectures.

- Eventually migration to multi-region.

Motivation for Change



This id should be a globally unique 
identifier for an object, and given 
just this id, the server should be 

able to refetch the object.

https://graphql.org/learn/global-object-identification/



A Bit about Sharding
Using Vitess with unique VIndexes



pull_requests

 SELECT * from pull_requests WHERE id = 1;



pull_requests

 SELECT * from pull_requests WHERE id = 1;

pull_requests pull_requests

*Sharded by Repository id

VtGate



pull_requests

 SELECT * from pull_requests WHERE id = 1 AND repository_id = 1;

pull_requests pull_requests

*Sharded by Repository id

VtGate



Multi-Region
Geo-located data.

● Global Routing
● Multi Data Center
● Complete data isolation

Image space



New Format
● Encoded Ownership Information.

● Compressed to reduce size.

● Backwards compatible for users already storing strings.



https://graphql.org/learn/global-obje
ct-identification/

New Format

PR_kwABAQ

Encoded/Message Packed StringType Hint



https://graphql.org/learn/global-obje
ct-identification/

New Format

- PR_ - Type “hint”

- kwABAQ => [0, 1, 1] - ownership/id



Rollout Strategy



Goals

Continue to support those who store 
IDs.

Cannot break users.

Avoid rollout out all IDs at one time.

Progressive.

Provide time and tooling for users to 
be able to migrate.

Deprecation Period.



https://graphql.org/learn/global-obje
ct-identification/

Avoid Breaking Changes

- Support both ID formats.

- Advanced warning via communication channels.

- Backwards compatible format.



When building integrations that 
use either the REST API or the 

GraphQL API, it's best practice to 
persist the global node ID so you 

can easily reference objects 
across API versions.



https://graphql.org/learn/global-obje
ct-identification/

Progressive Rollout

- Determine implementation for each object.

- Ensure the correct ownership data.

- Set dates in code for when an object will be “ready”.



https://graphql.org/learn/global-obje
ct-identification/

Progressive Rollout



https://graphql.org/learn/global-obje
ct-identification/

Deprecation Period

- Time to migration caches to new ID format.

- Tooling to perform ID conversion.

- Warning messages when using old format.

- Eventual brownout and sunset of old format.



Challenges
Some pitfalls encountered along the way. 



https://graphql.org/learn/global-obje
ct-identification/

Challenges

- Decoding IDs.

- Delegating work to first responder.

- Missing/unknown ownership information.



https://graphql.org/learn/global-obje
ct-identification/

More Challenges

- Initial ID format too long.

- Unstable IDs due to ownership changes.



Thank you for joining.
Andrew Hoglund

GitHub


